Exercise 12

In the second frame in Figure 5 (for $t=1 / 4$), the maximum of the displacement appears to be larger than $1 / 2$. Explain this, and if possible compute the value of the maximum.

Solution

Figure 5 shows the graph of

$$
u(x, t)=\sin \frac{\pi x}{L} \sin \frac{\pi c t}{L}, \quad 0<x<L,
$$

a solution to the wave equation on the interval $0<x<L$ with fixed ends, versus x at several times. The graph at $t=1 / 4$ for $c=1$ and $L=1$ is shown below.

To find the maximum of this curve shown, differentiate u with respect to x

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial}{\partial x}\left(\sin \frac{\pi x}{L} \sin \frac{\pi c t}{L}\right) \\
& =\frac{\pi}{L} \cos \frac{\pi x}{L} \sin \frac{\pi c t}{L},
\end{aligned}
$$

plug in $t=1 / 4$ and $c=1$ and $L=1$,

$$
\frac{\partial u}{\partial x}\left(x, \frac{1}{4}\right)=\pi \cos \pi x \sin \frac{\pi}{4},
$$

and set it equal to zero.

$$
\pi \cos \pi x \sin \frac{\pi}{4}=0
$$

Solve for x.

$$
\begin{gathered}
\cos \pi x=0 \\
\pi x=\frac{1}{2}(2 n-1) \pi, \quad n=1,2,3, \ldots
\end{gathered}
$$

At the first turning point in the graph $n=1$.

$$
\pi x=\frac{\pi}{2}
$$

Consequently, the x-coordinate of the maximum is

$$
x=\frac{1}{2} .
$$

To get the string's amplitude, plug this x-coordinate and $t=1 / 4$ into the formula for u with $c=1$ and $L=1$.

$$
u\left(\frac{1}{2}, \frac{1}{4}\right)=\sin \frac{\pi}{2} \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}} \approx 0.707
$$

The maximum occurs at $x=1 / 2$, but the value of the maximum is $1 / \sqrt{2}$.

